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ABSTRACT

To improve the prediction accuracy of visual quality metrics for
video we propose two simple steps: temporal pooling in order to
gain a set of parameters from one measured feature and a correction
step using videos of known visual quality. We demonstrate this ap-
proach on the well known PSNR. Firstly, we achieve a more accurate
quality prediction by replacing the mean luma PSNR by alternative
PSNR-based parameters. Secondly, we exploit the almost linear re-
lationship between the output of a quality metric and the subjectively
perceived visual quality for individual video sequences. We do this
by estimating the parameters of this linear relationship with the help
of additionally generated videos of known visual quality. Moreover,
we show that this is also true for very different coding technolo-
gies. Also we used cross validation to verify our results. Combining
these two steps, we achieve for a set of four different high defini-
tion videos an increase of the Pearson correlation coefficient from
0.69 to 0.88 for PSNR, outperforming other, more sophisticated full-
reference video quality metrics.

Index Terms— PSNR, video quality metric, AVC/H.264, Dirac,
temporal pooling.

1. INTRODUCTION

The vast majority of video quality metrics utilises a combination
of features having a known or suspected relationship to the subjec-
tively perceived visual quality. Differences are in the selected fea-
tures, how they are measured, and how they are combined. Most
video quality metrics either average all single feature measurements
of each frame and then combine these mean values or first combine
the features of each frame into one quality value per frame and then
average these values over time [1, 2]. Hence one feature measure-
ment results in only one parameter. Averaging, however, may not
be sufficient to describe the distribution of this feature both in space
and time.

In this contribution we therefore propose to improve the predic-
tion accuracy of a video quality metric by taking more than one pa-
rameter derived from a single feature measurement. We propose to
evaluate an extended set of parameters gained from one feature us-
ing different temporal pooling functions. Also the parameters should
not be based on assumptions about the human visual system (HVS),
but selected according to which parameter describes the statistical
distribution of the feature best.

Secondly, we propose an additional correction step that is ap-
plied to the quality prediction gained by measuring and combining
features [3]. It improves the prediction accuracy by estimating the
relationship between the output of the metric and the perceived vi-
sual quality for the video. This estimation allows to precisely deter-
mine the quality of previously unknown videos, even if the model
that is used is not very well suited for this video. The correction step

is generic in the sense, that it can be applied to any type of visual
quality metric. In [3] the most important restriction was that we had
to generate additional videos using an encoder similar to the encoder
used for the videos under test. Contrary to this, we suggest in this
contribution that the restriction does not necessarily apply, and that
the additional videos can be generated using different coding tech-
nology.

The basic feature we choose to demonstrate the effectiveness of
the two proposed methods is the Peak Signal to Noise Ratio (PSNR).
Since the beginning of video transmission PSNR has been in nearly
univerisal use as a predictor for the visual quality of processed video
even though it is well known that PSNR does not match the subjec-
tive visual quality of videos very well.

Our contribution is organised as follows: we explain pooling,
selection and combining of the parameters, before introducing the
correction step. Then we describe the subjective test and present the
results. Finally we conclude with a short summary.

2. TEMPORAL POOLING: FEATURES TO PARAMETERS

Extracting a set of features from a video can be seen as a different
representation of this video. The content of the video is not rep-
resented using the single values of each pixel or a combination of
motion information and residual error, but by features that relate to
visual quality. Due to the temporal dimension of video, features
extracted for a certain time instance e.g. one frame, have to be com-
bined into one quality value by temporal pooling. Most metrics do
this by calculating the mean value over time, only few metrics use
different pooling functions for the single features [4]. This pooling
step results in a number of parameters which are derived from the
extracted features. Calculating only the mean value for a feature is
not sufficient to describe the statistical temporal and spatial distribu-
tion of this feature. Thus describing videos only with the mean is
too coarse and hence more parameters are needed.

We use PSNR as a feature that can be extracted easily from
videos. A simple adaptation to the HVS is made by evaluating the
PSNR in the YUV color space, denoted as PSNRY . Using PSNR
as a quality indicator requires the calculation of PSNR values on
a frame-by-frame basis. The resulting series of values is then av-
eraged to determine a single value for the entire video sequence.
To simplfy matters this is usually only done in the luma component
(PSNRY

Mean). Calculating PSNRY
Mean, however, does not result in

a useful representation of the videos’ visual quality.
Therefore we propose not only to evaluate the mean value, but

also the minimum, maximum, standard deviation, the 90% and the
10% percentiles, denoted as PSNRY

Min, PSNRY
Max, PSNRY

sDev ,
PSNRY

90 and PSNRY
10, respectively. Temporal variations of PSNR

can differ significantly between different sequences. Hence we also
calculate the difference in PSNR between to consecutive frames
dPSNRY and apply the same temporal pooling as for PSNRY . As
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Table 1: Correlation values for PSNR based
parameters to results of subjective tests

PSNR Parameter Pearson Correlation

PSNRY
Mean 0.688

PSNRU
Mean 0.588

PSNRV
Mean 0.603

PSNRY
Min 0.753

PSNRU
Min 0.606

PSNRV
Min 0.635

PSNRY
10 0.720

a result, the feature PSNRY is represented by a set of 12 different
values derived from PSNR. A similar process is applied to the two
chroma channels resulting in PSNRU and PSNRV . Such a brute-
force approach results in a total number of 36 PSNR parameters.
Table 1 shows the Pearson correlation values of some of these PSNR
based parameters to the results of the conducted subjective test.
Take note that PSNRY

Mean is in our test set not the best predictor for
visual quality, but that PSNRY

Min appears to be better suited.

3. SELECTING AND COMBINING PARAMETERS

Although a large number of parameters can be calculated only a few
of those will be useful in predicting the visual quality of a video se-
quence. Many do not have any impact on a prediction model and
some may even be harmful to prediction process. Using an extended
set of parameters as described in section 2, we construct a data ma-
trix X. The rows correspond to data from individual sequences and
the columns represent the parameters. The visual quality values that
were determined in subjective tests are represented by the column
vector y. Assuming K sequences and L parameters, X has the di-
mension K × L. In our example the matrix contains 36 parameters
and 48 sequences, as four different videos were encoded using three
different encoders at four different bit rates.

First we reduce the number of parameters to reach a robust pre-
diction model by analyzing simple statistical properties: some pa-
rameters do not show significant variation across the different videos
or are not correlated to the visual quality vector y at all. Thus we
reduce the number of parameters from 36 to 24, omitting all param-
eters for dPSNRU and dPSNRV .

Then we analyse the contribution of the remaining parameters to
the visual quality prediction. We use principal component analysis
(PCA) to determine a more compact and stable representation of X
and a partial least squares regression (PLSR) to find the relationship
between X and y. As we are interested in the variation of the pa-
rameter values, the values are centered around the mean and scaled
to achieve a standard deviation of 1.0 in order to avoid that small,
but important variation in one parameter is covered by large, but less
important noise in a another parameter.

PLSR is an extension of the principal component regression
method (PCR). For PCR the data matrix X is first subjected to a
PCA, and then for selected principal components (PCs) a regression
on y is done. The disadvantage of PCR is that the PCs best suited to
represent X, carrying the structure of the videos, are not necessarily
the same PCs best suited to explain the variance in y, describing
the quality variation of the videos. Therefore the modeling is done
simultaneously on X and y, ensuring PCs that explain the variance

Table 2: Most relevant weights for the different models

Model(a) None CR IT OTC PJ

dPSNRY
10 -1,391 -0,826 -0,932 -1,445 -0,942

PSNRY
Min 1,089 1,045 1,102 1,048 0,844

dPSNRY
Min 0,959 0,578 0,474 1,078 0,838

PSNRY
90 0,794 0,432 0,892 0,703 0,518

dPSNRY
90 0,787 0,619 0,276 0,706 0,857

(a) Excluded Sequence

in X and y at the same time [5].
We split the available data set into four different subsets and

applied the PLSR on each of these subsets. Each subset consists
of all data sets excluding the data set pertaining to one of the four
sequences. Consequently, we compute four different PLSR models,
allowing us to verify the results for each sequence using a model
that did not include this particular sequence during the calibration
step. If we obmitted this cross calibration approach, it would lead to
overly optimistic prediction models as we will show in section 6. Not
only the weights for the selected PSNR parameters were determined
using a cross validation approach, but also the selected parameters
themselves.

The PLSR on the four subsets and on the complete data set re-
veals that the parameters PSNRU

Max, PSNRV , PSNRV
Min, PSNRV

10,
PSNRV

90, dPSNRY , dPSNRY
sDev and dPSNRY

Max have no relevance
for the model, as the weights of these PSNR values are very close
to 0. Still, 16 parameters are remaining that have a relevant influ-
ence on the variance of the entries of X and y. We determined an
optimal number of 5 PCs to efficiently describe the data in X and y
simultaneously. The remaining error in X could be reduced further
by including more PCs. But this would result in an overfitted model
exhibiting reduced ability to predict the quality of unknown videos.
The visual quality is then calculated according to

PSNRM = b0 +

16∑
j=1

wjPSNRj , (1)

where the weights w are provided by the PLSR. Table 2 shows the
weights for the preprocessed parameters that do have the highest in-
fluence on the new quality metric PSNRM .

Reaching a stable model using only four sequences is practically
impossible if not all of the four sequences show similar content char-
acteristics, as can be seen by the weights in Table 2 for the different
models. A lower bound of 20 well selected sequences should be the
minimum for a general model. Even if each of the models is subop-
timal in predicting the respective verification sequence, the Pearson
correlation coefficient for the PSNRM metric is 0.80, outperforming
not only standard PSNRY

Mean, but also PSNRY
Min which showed the

highest correlation to visual quality so far.

4. CORRECTING THE QUALITY PREDICTION

Most visual quality metrics exhibit an almost linear realationship be-
tween the estimated quality of the metrics and the actual visual qual-
ity if single source videos are considered [6]. This can also be seen
exemplarily in Fig. 2 for one model. In [3] we introduced a generic
method to increase the prediction accuracy of video quality metric
by estimating the parameters of a linear model for this relationship.
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Fig. 1: Quality prediction system

This is done by generating two video sequences with a known visual
quality. This is done by encoding the original video with a estab-
lished encoder configuration producing videos at a known quality.
A very simple encoder using a fixed quantization parameter (QP) is
suitable for this task: a very high value of the QP results in a video
having a very low visual quality vlow, a low QP in a video with high
visual quality vhigh. For simplicity the values for vlow are set to
0.25 and for vhigh to 1 on a scale from 0 and 1. We then estimate
the slope s and offset o of the regression line describing the almost
linear relationship between the output of the metric and the visual
quality using the metric output PSNRM

low and PSNRM
high for these

two videos:

s =
PSNRM

high − PSNRM
low

vhigh − vlow
(2)

o = PSNRM
low − vlows. (3)

In [3] this method was verified to work well for PSNR and is
also an integral part of the reduced reference metric presented in [7].
Moreover, a modified version of this correction step was used for the
no reference metric in [8]. Using this approach our example metric
PSNRM results in the improved metric PSNRM+, calculated as

PSNRM+ = (PSNRM − o)/s. (4)

These additional instances vhigh and vlow need not be generated
with the same coding technology which was used for the videos with
unknown quality as suggested in [3]: the prediction accuracy is im-
proved even when using a substantially different coding technology
for these additional instances as we demonstrate in this contribution.
The final prediction system including this correction step is shown
in Fig. 1. A regression line that was estimated using this simple
method is shown for one model in Fig. 2. While the offset is slightly
too high, the slope is very close to the regression lines of the actual
data.

5. SUBJECTIVE TESTING

We used the sequences ’CrowdRun’(CR), ’ParkJoy’(PJ), ’IntoTree’(IT)
and ’OldTownCross’(OTC) from the SVT high definition multi for-
mat test set [9] with a spatial resolution of1920 × 1080 pixel and a
frame rate of 25 frames per second. Each sequence was encoded at
four different bit rates, from 5.4 Mbit/s to 30 Mbit/s resulting in a
quality range from ‘not acceptable’ to ‘perfect’, corresponding to a
mean opinion score (MOS) between 0.19 and 0.96 on a scale from 0
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Fig. 2: Detailed results for CrowdRun, PSNRM (Model “CR”); line
shows the estimated regression line

to 1. The sequences were encoded using the AVC/H.264 reference
software [10], version 12.4. Two significantly different encoder
settings were used: a low complexity (LC) and a high complexity
(HC) setting representing a ’Main’ and ’High’ profile, respectively,
to assure that our model is independent of specific coding structures
and settings. Additionally we used the ’Dirac’ encoder [11] version
0.7 in order to investigate, if it is possible to build a model that is
useful for different coding technologies. The additional instances of
the original videos to estimate the regression lines were generated
using simple encoder settings for the AVC/H.264 reference encoder
in order to keep the additional computational complexity caused by
the correction step within an acceptable limit.

The subjective tests were performed in compliance with ITU-
R BT.500 [12] at the video quality evaluation laboratory of the In-
stitute for Data Processing at the Technische Universität München.
In total 17 naı̈ve viewers and one expert viewer participated. All of
them were screened for visual acuity and color blindness. The dis-
tance between the screen and the test subjects was set to three times
the picture height. The test was carried out using the Double Stim-
ulus Unknown Reference (DSUR) [13], which is a variation of the
standard DSCQS test method, and a discrete voting scale with eleven
grades ranging from 0 to 10 later rescaled to the interval from 0 to 1.
The 95% confidence intervals of the subjective votes are below 0.07,
the mean 95% confidence interval is 0.04.

6. RESULTS

The PSNRM+ metric is compared to PSNRY
Mean and to three more

full reference video quality metrics. These are: SSIM [2], the VQM
described in [14] and the VQM according to Annex D of ITU-
T J.144 [4]. For the VQM as part of ITU-T J.144, the general model
was used. The SSIM was evaluated on all three channels of the
YUV color space.

The high prediction accuracy for the example metric PSNRM+

is shown by a Pearson correlation coefficient of 0.88, which is sig-
nificantly above the correlation achieved for PSNRY

Min and the ref-
erence metrics. No data fitting was performed for PSNRM+. The
correction step is not necessary for the case where the same data is
used during calibration and validation. For this case the relation-
ship between the parameters and the visual quality for each single
video is already part of the model. The PSNRM model without the
correction step can only be used to give correct quality estimates for
the four videos included in the model. It is the subsequent correction
step that allows us to rate previously unknown videos. Table 3 shows



Table 3: Prediction Results

Metric Pearson Spearman RMSE(a)

PSNRY
Mean 0.69 0.61 0.22

PSNRY
Min 0.75 0.70 0.18

PSNRM 0.80 0.71 0.14
PSNRM+ 0.88 0.87 0.17(b)

PSNRM (c) 0.97 0.97 0.05

VQM [14] 0.78 0.66 0.13
SSIM [2] 0.85 0.79 0.11
VQM Annex D of [4] 0.85 0.78 0.11
(a) After first order fitting for all comparison metrics, no fitting for

PSNRM , PSNRM+

(b) If first order fitting would be applied, this is reduced to 0.11
(c) No cross validation

the correlation values for the Pearson correlation, the Spearman rank
order correlation and the Root Mean Squared Error (RMSE) for the
different quality metrics. Also a overview of the prediction results
for PSNRM+ is shown in Fig. 3. We see that our example met-
ric PSNRM+ delivers an improved prediction accuracy compared to
the reference metrics. Especially the Spearman rank order correla-
tion is improved, whereas for the VQM according to Annex D of [4]
and the SSIM [2], the Pearson correlation coefficient is only slightly
worse and the RMSE is nearly identical.

7. CONCLUSION

We proposed two simple methods that can help to improve video
quality metrics: extending the set of parameters that are gathered
from a single feature by temporal pooling and introducing a simple
correction step which estimates the relationship between the output
of a metric and the visual quality for a video. Both improve the
prediction accuracy considerably. In particular the correction step
allows us to predict the quality of previously unknown videos, even
if the base metric itself is not very well adapted for this type of video
sequence.

The example metric PSNRM+ was developed to demonstrate
the effectiveness of these two methods. A Pearson correlation of
0.88 is remarkably high for this rather simple metric especially com-
pared to the results of more sophisticated full reference metrics. Due
to our cross-validation approach, this value is not the result of data
fitting, but shows the real capability of this visual quality metric for
high definition video.

The presented gains may not hold completely for a larger data
set. Still, we strongly believe that the general principle provides
relevant improvements for predicting the visual quality.
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