
DESIGN OF NO-REFERENCE VIDEO QUALITY METRICS
WITH MULTIWAY PARTIAL LEAST SQUARES REGRESSION

Christian Keimel, Julian Habigt, Manuel Klimpke and Klaus Diepold

Technische Universität München, Institute for Data Processing,
Arcisstr. 21, 80333 Munich, Germany

christian.keimel@tum.de, jh@tum.de, msk@mytum.de, kldi@tum.de

ABSTRACT
No-reference video quality metrics are becoming ever more popular,
as they are more useful in real-life applications compared to full-
reference metrics. One way to design such metrics is by applying
data analysis methods on both objectively measurable features and
data from subjective testing. Partial least squares regression (PLSR)
is one such method. In order to apply such methods, however, we
have to temporally pool over all frames of a video, loosing valuable
information about the quality variation over time. Hence, we extend
the PLSR into a higher dimensional space with multiway PLSR in
this contribution and thus consider video in all its dimensions. We
designed a H.264/AVC bitstream no-reference video quality metric
in order to verify multiway PLSR against PLSR with respect to the
prediction performance. Our results show that the inclusion of the
temporal dimension with multiway PLSR improves the quality pre-
diction and its correlation with the actual quality.

Index Terms— H.264/AVC, video quality metric, no-reference
metric, multilinear data analysis, multiway PLSR, trilinear PLS.

1. INTRODUCTION

In the traditional approach to video quality metrics, the goal is to
build a model of the spatial and temporal properties of the human
visual system (HVS) as well as possible in order to predict quality
perception of human observers adequately. This, however, assumes
that the HVS is understood well enough to create a comprehensive
model. If we utilize a more data driven approach, we consider the
HVS as a black box: we use data analysis methods to determine
the relationship between objectively measurable features at its input
and the subjective quality at the box’s output. Partial Least Squares
Regression (PLSR) is used in some of our previous contributions [1,
2].

The temporal nature of video, however, is often neglected. Fea-
tures are determined on a frame-by-frame basis and then temporally
pooled over all frames. The data analysis is then performed only on
these pooled features. This arbitrary pooling, especially averaging,
obscures the influence of temporal distortions on the quality percep-
tion and thus leads to less than optimal models as shown in [2].

We therefore propose in this contribution to extend the data anal-
ysis with PLSR into the higher dimensional space with multiway
PLSR for the design of video quality metrics. In doing so, we can
avoid temporal pooling and build our model directly with the three
dimensional video cube. To demonstrate the advantage of the mul-
tidimensional approach, we will design no-reference video quality
metrics based on features extracted from encoded H.264/AVC bit-
streams for HDTV similar to [3] and compare the results to PLSR
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Fig. 1: Video cube of a video sequence with t frames at a spatial
resolution of x× y pixels (left) and corresponding m features for n
different video sequences with t frames.

with temporally pooled features. Such a metric is of course limited
in its scope due to the necessary adaption to a certain coding tech-
nology and its bitstream format, but considering that H.264/AVC is
the predominant coding technology for HDTV, the scope can be as-
sumed to be wide enough. To the best of our knowledge, this is the
first use of multiway PLSR in the design of video quality metrics.

PLSR itself has already been used for the design of video quality
metrics in [1, 2]. A video quality metric with the multi-dimensional
extension of the principal component regression (PCR), 2D-PCR,
was presented in [4]. In related contributions to bitstream feature
no-reference video quality metrics, Eden estimates the PSNR of in-
terlaced HDTV video sequences with H.264/AVC bitstream features
in [5] whereas Slanina et al. in [6] estimate the PSNR for videos in
CIF resolution. Rossholm and Lövström not only estimate PSNR
in [7], but also other video quality metrics for videos in CIF res-
olution from the bitstream. In [8], Lee et al. use bitrate, QP and
deblocking filter parameters for quality prediction of QCIF resolu-
tion videos, but no different coding structures were considered in
the contribution by Lee et al. Another approach is the combination
of bitstream features and features extracted from the decoded video
sequences in a hybrid metric as proposed for interlaced HDTV by
Sugimoto et al. in [9].

This contribution is organized as follows: firstly, we will discuss
PLSR and multiway PLSR, before introducing the feature extraction.
We then shortly discuss the model building, followed by a descrip-
tion of the subjective testing. After presenting and discussing the
results, we will conclude with a short summary.
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2. DESIGN OF VIDEO QUALITY METRICS WITH
PARTIAL LEAST SQUARES REGRESSION

In the data analysis approach, we do not assume a-priori specific
relationships between the features and the visual quality, but rather
gain the relationships by analyzing the available data. Firstly, we
construct a data matrix X where the rows correspond to data from
individual sequences and the columns represent the features. The vi-
sual quality values that were determined in subjective tests are rep-
resented by the n × 1 column vector y. With n sequences and m
features, X is an n × m matrix. Our aim is to find the unknown
m×1 regression weight vector b, mapping the features to the visual
quality

y = Xb. (1)

Note that we collapsed the temporal dimension of the n×m× t
video cube by temporal pooling as shown in Fig. 1 into a 1×m row
vector along t.

Although we extracted a large number of parameters, not all will
be useful in predicting the visual quality of a video sequence, as we
will see shortly. A principal overview of the model building with
data analysis is given in Fig. 2.

2.1. Bilinear Partial Least Squares Regression

PLSR is an extension of the principal component regression method
(PCR). For PCR, the data matrix X is first subjected to a PCA, and
then for selected principal components (PC) a regression on y is
done. The disadvantage of PCR is that the PCs best suited to rep-
resent X, carrying the structure of the videos, are not necessarily
the same PCs best suited to explain the variance in y, describing the
quality variation of the videos. In contrast, the modeling with PLSR
is done simultaneously on X and y, ensuring PCs that explain the
variance in both X and y best. This basic type of PLSR is also
called bilinear partial least squares or PLS1 . Bilinear relates to the
two-dimensional nature of the data matrix X, and 1 denotes that the
dependent variable y is a vector. The iterative algorithm shown in
Listing 1 describes how we can extract the first g PCs with PLS1.

Algorithm 1: Bilinear PLS1
center X and y
X1 = X and y1 = y
f = 1

1 wf =
XT

f yf

‖XT
f
yf‖

2 tf = Xfwf

3 q̂f =
tTf yf

tT
f
yf

and pf =
XT

f yf

tT
f
yf

4 Let Xf+1 = Xf − tfp
T
f and yf+1 = yf − tf q̂f

5 Continue from 1 and let f = f + 1 until f = g

Based on the extracted PCs w, the scores t and loadings p, we
can then obtain an estimation b̂ of the regression weight vector b
and thus can write the quality estimation ŷ for y as

ŷ = 1b̂0 +Xb̂+ e, (2)

where b̂0 describes the offset and e the estimation error of the model.
The video quality of unknown video sequences with a 1×m feature
vector xu can then be predicted as

ŷu = b̂0 + xub̂. (3)

For more information on PLS1 and PCA/PCR, we refer to [10] and
to [11], respectively.

2.2. Trilinear Partial Least Squares Regression

The multidimensional extension of PLS1, multiway or N-way PLS,
was introduced by Bro in [12]. It extends the principle behind PLS1
of maximizing the variance explained by the PCs in both sides of (1)
to higher dimensional data. In particular, the trilinear partial least
squares (Tri-PLS1) describes the partial least squares regression of
a three-way n × m × t data array X(:, :, :) onto an n × 1 column
(quality) vector y. The main difference compared to PLS1 is that
the principal components are now determined dependent on weights
gained along both the m and t dimension, whereas in PLS1 the prin-
cipal components are only dependent on the m dimension.

The iterative algorithm shown in Listing 2 describes how
X(:, :, :) is decomposed in its PCs wm and wt along both fea-
ture dimensions. Z represents the matrix of all zmt, with

zmt =
N∑

n=1

ynxnmt. (4)

The scores tn corresponding to each sample n can then be written
with the principal components as

tn =

M∑
m=1

T∑
t=1

xnmtw
M
mwT

t . (5)

Algorithm 2: Trilinear PLS1
center X and y
y0 = y
f = 1

1 Calculate Z

2 Determine wm
f and wt

f by SVD of Z
3 Calculate tf . T = [t1 · · · tf ]
4 bf = (TTT)−1Ty0

5 Each sample Xi is replaced with
Xi − tiw

m
f (wt

f )
T and y = y0 −Tbf

6 Continue from 1 and let f = f + 1 until proper description
of y0

Based on the extracted PCs and the scores, we can then obtain
an estimation of a t ×m regression matrix, B̂, for direct regression
of a 1×m× t feature slice of X(:, :, :), representing the features of
a particular sequence over time on our quality vector y.

Hence, the quality estimation (2) can now be written as

ŷ = 1b̂0 +XB̂+ e. (6)

Unknown video sequences can be predicted similarly to (3), where
the feature vector xu is replaced by a corresponding feature slice
Xu. For a more detailed description of Tri-PLS1, we refer to [12,
13].

3. BITSTREAM BASED NO-REFERENCE METRIC

In order to compare PLS1 and Tri-PLS1, we will design a H.264/AVC
bitstream based no-reference video quality metric with each method
and then compare their prediction performance. The PLS1 based
metric was already presented in [3].



Fig. 2: Model building with bitstream features and PLSR

3.1. Feature Extraction

Firstly, we need to extract features from the H.264/AVC bitstream
that describe the properties of the encoded video sequence. We as-
sume in the following that the byte stream representing the Network
Abstraction Layer (NAL) according to Annex B of the H.264/AVC
standard is available and that any channel coding done for transmis-
sion has already been removed. Note that we do not have to further
decode and reconstruct each frame: it is sufficient if we only re-
verse the entropy encoding of the bitstream, as we are not interested
in the completely decoded frame, but rather in the properties of the
bitstream. We then parse those NAL units (NALU) containing infor-
mation about the coded frames, the so-called Video Coding Layer
(VCL). Each VCL-NALU describes one slice of the current frame.
A slice in turn is partitioned into multiple macroblocks, which again
can be divided into submacroblocks. Hence, we parse three succes-
sive layers as shown in Fig. 3. Some of these features were also used
by Rossholm and Lövström in [7]. For feature extraction, we used a
modified decoder of the H.264/AVC reference software [14].

Before descending to the slice level, we extract the profile,
level and entropy encoding type for the complete video sequence.
Then, we extract the following features for each slice in the video
sequence:

• slice type: I-, P- and B-slices (%I,%P,%B)

• bits per slice (BPS)

• average QP per slice (QPA)

• average, minimum and maximum motion vector length per
slice (MV, MVMin, MVMax)

• average and maximum motion vector error per slice (MVd,
MVdMax)

For the PLS1 based video quality metric, these features are then
pooled temporally over all frames by calculating the average, me-
dian, standard deviation, minimum, maximum, 10% and 90% per-
centiles. We denote this for each feature f as fAvg , fMed, fSD ,

fMin/Max and f10/90. Additionally, we calculate the average dif-
ference qpdAvg between initial and changed QP over all slices, but
also the percentage of slices with constant QP over all macroblocks
(%qpd). Furthermore, we determine the percentage of the different
slice types, the different macroblock types and their subdivision over
the whole video sequence:

• percentage of intra, inter and skip coded macroblocks (%In-
tra, %Inter, %Skip)

• percentage of intra macroblocks with 16×16, 8×8 and 4×4
subdivision (%I16x16, %I8x8, %I4x4)

• percentage of inter macroblocks with 8× 8 and 4× 4 subdi-
vision (%P8x8, %P4x4)

All in all, we thus get 64 different features from each video sequence
in the PLS1 case.

For the Tri-PLS1 based video quality metric, no temporal pool-
ing is performed and we used all 19 features directly in the model
building. Hence, we get an m× t feature matrix for each sequence.
We did not consider features that did not vary during the sequence
i.e. profile, level and entropy encoding type.

3.2. Sigmoid Correction

On the extremes of the voting scale in subjective testing, at very
good or bad quality, the test results exhibit a nonlinear nature. Thus
ratings do not reach the boundaries of the scale, but saturate earlier.
Therefore, we correct the prediction values ŷ slightly, using a fixed
sigmoid nonlinear correction in order to emulate this behavior [1].
The sigmoid correction of ŷ is given as

ŷS = 1.0/(1 + e(−(ŷ−0.5)/0.2)). (7)

This function is not adapted to the actual data, but is rather a fixed
part of the quality metric. Hence, ŷS represents the final prediction
result of our video quality metric. The correction function is shown
in Fig. 6.



Fig. 3: H.264/AVC bitstream: overview over the different layers

3.3. Cross Validation

It is important to use separate data sets for training and validation
of the designed metric. If we used the same data for training and
validation, it would lead to overly optimistic prediction models as
discussed in [1].

Therefore, we perform a cross validation and split the available
data set into four different subsets and apply both data analysis meth-
ods on each of these subsets. Each subset consists of all data sets
excluding one data set of the four video sequences introduced in the
following section. Consequently, we compute four different models,
allowing us to verify the results for each sequence using a model that
did not include this particular sequence during the calibration.

4. SUBJECTIVE TESTING

For subjective testing, we encoded four different video sequences
with the H.264/AVC reference encoder at multiple bitrates. We used
two significantly different encoder settings, each representing the
complexity of various devices and services. The first setting is cho-
sen to simulate a low complexity (LC) H.264/AVC encoder: many
tools that account for the high compression efficiency are disabled.
In contrast to this, we also used a high complexity (HC) setting that
aims at getting the maximum possible quality out of this coding
technology. We used the H.264/AVC reference software [14] ver-
sion 12.4. Selected encoding settings are listed in Table 1. We used
the test sequences CrowdRun, ParkJoy, InToTree and OldTownCross
from the SVT high definition multi format test set in the 1080p25
HDTV format, as shown in Fig. 7. We selected four rate points at
bitrates from 5.4 Mbit/s to 30 Mbit/s. This resulted in a quality range
from ‘not acceptable’ to ‘perfect’, corresponding to mean opinion
scores (MOS) between 0.19 and 0.96 on a scale ranging from 0 to 1.
In total, we have thus 32 different data points. The tests were per-
formed in the video quality evaluation laboratory of the Institute for
Data Processing at the Technische Universität München in a room
compliant with recommendation ITU-R BT.500 [15]. For more de-
tails on the subjective testing and the used data set, we refer to [16].

5. MODEL BUILDING

The PLS1 regression and subsequent cross validation on the four
subsets reveal that only 48 of the temporally pooled features are rel-
evant for the model and thus m = 48, as the regression weights of
the other 12 do not have any significant influence on the predicted

Table 1: Selected encoder settings

LC HC

Encoder JM 12.4
Profile&Level Main, 4.0 High, 5.0
Slices per Frame 1 1
Reference Frames 2 5
R/D Optimization Fast Mode On
Search Range 32 128
B-Frames 2 5
Temporal Levels 2 4
Intra Period 500 ms
8x8 Transform Off On

quality. In particular, we can exclude the feature MVMin completely.
We determined an optimal number of 3 PCs to efficiently describe
the variance in both X and y at the same time.

The video quality model with Tri-PLS1 showed after cross vali-
dation, that only 15 of the originally 19 extracted features play a sig-
nificant role in the quality prediction. In particular, we could exclude
the percentage of different slices (%I,%P,%B), MVMin and BPS. We
used the complete sequences with all frames in the model building
step. For the Tri-PLS1 model, we determined an optimal number of
4 PCs to describe the model sufficiently. The resulting regression
matrix B̂ is shown exemplary for the model built with the sequences
ParkJoy, InToTree and OldTownCross in Fig. 5.

Fig. 5: Regression matrix B̂ for ParkJoy, InToTree and OldTown-
Cross model, showing frames 50 to 75
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Fig. 4: Prediction results for both methods with sigmoid correction

For both PLS1 and Tri-PLS1, features were considered to be in-
significant if they could be omitted from the model building without
any overall influence on the prediction performance of the gained
model. This indicates that the contribution of these feature is negli-
gible for explaining the visual quality variance.

Note, that while the models designed with both methods are rela-
tively independent of the content due to the cross validation, we only
considered two encoder settings with two different coding structures.
Hence, the models will not yield valid results for very different cod-
ing structures.

Table 2: Performance of the quality prediction

Metric Pearson Spearman RMSE (a)

PLS1 based (b) 0.91 0.95 0.09
Tri-PLS1 based (b) 0.93 0.93 0.08

PLS1 based 0.93 0.95 0.08
Tri-PLS1 based 0.94 0.93 0.07
No-reference metric [1] 0.91 0.85 0.09

PSNR 0.72 0.69 0.15
SSIM [17] 0.85 0.82 0.12
VQM Annex D of [18] 0.84 0.78 0.11
(a) After first order fitting for all comparison metrics, no fitting for both

no-reference metrics
(b) No sigmoid correction

6. PREDICTION PERFORMANCE

The prediction results of the metrics based on both methods are pre-
sented in Fig. 4 and Table 2. Besides the Pearson and Spearman rank
order correlation coefficents, we also provide the root mean squared
error (RMSE) between predicted and actual visual quality. For com-
parison, we included the results of our no-reference metric presented

in [1], but also the results of two well-known full-reference video
quality metrics: SSIM [17] and the VQM according to Annex D of
ITU-T J.144 [18]. For the latter, the general model was used. SSIM
was evaluated on all three channels of the Y CBCR color space.
While both metrics are general purpose metrics and therefore not
as tuned to H.264/AVC artefacts as the proposed metric, they still
provide a good baseline comparison to the state-of-the-art in video
quality metrics.

The results show that both metrics outperform our previous no-
reference metric in [1] slightly with respect to the Pearson correla-
tion and the RMSE, but especially well with respect to the Spearman
rank order correlation. This is not surprising, as we build our model
only for H.264/AVC, compared to [1], where we also considered al-
ternative, wavelet-based coding technologies.Moreover, our metrics
outperformed all full-reference metrics. However, note in Fig. 4 that
due to the lack of low quality data points in the training set, the pre-
diction quality is worse at the lower end of the quality scale.

In comparing both our metrics, we notice that the metric de-
signed with Tri-PLS1 slightly outperforms the PLS1 based metric
with respect to the Pearson correlation and the RMSE, although
PLS1 has a better prediction monotonicity as shown by the Spear-
man rank order correlation. In particular, the sigmoid correction
seems to be less important for Tri-PLS1 than for PLS1: if we take
a closer look at the individual data points before sigmoid correc-
tion, we can notice that while for the PLS1 models some predictions
exceed the upper limit of the quality scale and thus the correction is
needed to gain valid quality values, all predictions with the Tri-PLS1
models are within the valid range.

Also we can note in Fig. 4 that the prediction performance
was especially increased for the sequences CrowdRun and ParkJoy
with Tri-PLS1. In comparision, for the less demanding sequence
OldTownCross, the prediction performance is slightly decreased for
some rate points with Tri-PLS1. This can partly be explained by
the lack of variance between different rate points in the training set
for this sequence. For more details about the training set, we refer
to [16].



7. CONCLUSION

We extended the design of video quality metrics with data analy-
sis methods into the higher dimensional space for better exploitation
of video’s temporal nature. We designed two no-reference video
quality metrics with both the bilinear partial least squares regres-
sion method, PLS1, and with its multidimensional extension trilinear
PLS1.

Our results show that avoiding temporal pooling and the appli-
cation of trilinear PLS1 increases the prediction accuracy of the de-
signed metrics. Still, both metrics can be further improved in future
work by either including a larger data set or by considering more
than two different prediction structures and encoding settings.

The H.264/AVC bitstreams, the modified decoder for feature ex-
traction, regression matrices for the different models and additional
data is available at www.ldv.ei.tum.de/videolab.
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Fig. 7: Test sequences from the SVT high definition
multi format test set




