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ABSTRACT

PSNR is still one of the most often and universally used visual
quality metrics. Although it is not very well suited to describe
the human perception of visual quality, its simplicity and fa-
miliarity lead to its extensive use in many applications. We
propose to improve the predication accuracy of PSNR by sim-
ple temporal pooling and thus not only using the mean PSNR,
but also to exploit other statistical properties. In order to sup-
port this approach, we conducted extensive subjective testing
of HDTV video sequences at typical bit rates for consumer
and broadcasting applications. Using temporal pooling, we
were able to achieve an improvement of nearly 10 % in the
predication accuracy of PSNR for visual quality while not in-
creasing the computational complexity significantly. Also this
approach may be extendible to other frame-based metrics.

Index Terms— Visual quality, video quality metric,
PSNR, temporal pooling

1. INTRODUCTION

Many visual quality metrics for image and video processing
have been proposed so far. Nevertheless, the peak signal to
noise ratio, PSNR, is still the most widely used visual quality
metric even though its shortcomings with respect to human
perception of visual quality are well known. Particularly out-
side the specific research area of visual quality metrics alter-
native metrics are neither used nor apparently even known.

The popularity of PSNR is not only due to the familiarity
of researchers and developers with PSNR, but also because
of its simplicity and therefore easy implementation compared
to more sophisticated metrics. Moreover its computational
complexity is rather low. Hence it is used in a vast area of
applications: from the conception and development of new
video coding standards to the every day use in consumer prod-
ucts e.g. video cameras or other devices that encode video,
but also in the broadcasting industry to monitor signal qual-
ity or to support business decisions on offered service quality
and equipment acquisition. Although PSNR is clearly a full
reference metric, there has been extensive and quite promis-
ing research into extending PSNR into a no reference metric
by estimating the PSNR from bit stream features of encoded
videos: [1–3] use DCT coeffients to estimate the PSNR, Shim

et.al. [4] use integer transform coefficents and Ichigaya et.al.
use DCT coeffients and picture energy in [5]. A known limi-
tation of these no-referene PSNR estimation techniques, how-
ever, is that they usually only work for certain encoders e.g.
MPEG-2 [2, 5] or AVC/H.264 [3, 4] due to their dependance
on bitstream features and their statistical distribution. Still,
they are able to predict PSNR in a known no-reference envi-
roment very well. Thus PSNR can also be used in a known
no-reference environment like video streaming for IPTV or
signal distribution in broadcasting networks.

Usually the individual PSNR of each frame is averaged
over a complete video sequence, producing one PSNR value
representing the visual quality of the whole sequence. But
averaging is insufficient to describe the statistical distribu-
tion, especially if the individual values are not normally dis-
tributed. In this contribution we propose therefore to improve
the prediction accuracy of PSNR significantly by using differ-
ent, but simple temporal pooling functions and demonstrate
the effectiveness of temporal pooling on a set of HDTV se-
quences representing different consumer and broadcasting ap-
plications. Our results are supported by carefully done sub-
jective testing.

This contribution is organized as following: First we will
discuss temporal pooling in general before introducing the
different encoder scenarios. Then we will describe the con-
ducted subjective tests before applying temporal pooling to
PSNR. Finally we present the results and discuss them in the
conclusion.

2. TEMPORAL POOLING

Visual quality metrics determine the visual quality by com-
bining and evaluating one or more features that are extracted
from distorted videos, no matter if those features were cho-
sen to model the human visual system (HVS), or to represent
some distortion in the video. This feature extraction can ei-
ther be full reference, reduced reference or no reference. Most
video quality metrics follow this process of combining a set
of features into one numerical value representing the overall
visual quality of a video sequence. The features that are ex-
tracted may be based on knowledge of the HVS, or based on
typical distortions, or based on properties of a video, such as
the amount of details in the images.



Extracting a set of features from a video can be seen as
a different representation of this video. The content of the
video is not represented using the single values of each pixel,
or a combination of motion information and residual error,
but the representation is done using features that do have a
relationship to visual quality. As video does have a tempo-
ral dimension, features that were extracted for a certain time
instance e.g. one frame must be combined into one quality
value by temporal pooling. Most metrics do this by calculat-
ing the mean value over time [9–13]. One of the few met-
rics that use different pooling functions for the single features
is the VQM as described in Annex D of ITU-T J.144 [14].
In related works to temporal pooling, Minkowski summa-
tion [6] or exponentially weighted Minkowski summation [7]
are used. Both exhibit a high computational complexity due
to their use of exponential functions. This limits their ap-
plicaiton in consumer applications. In a recent contribution,
Rimac-Drlje et.al. compared temporal pooling methods for
CIF-size videos and for different visual quality metrics in-
cluding PSNR to subjective test results [8]. Simple statistical
properties as suggested in this contribution, however, were
only exploited for a subset of frames. Also details about the
conducted subjective tests used to verify the results are miss-
ing. In particular the outlier ratio and confidence intervals are
not provided.

This pooling step results in a number of parameters which
are derived from the extracted features. Calculating only the
mean value for e.g. PSNR is not sufficient to describe the
statistical distribution of this feature in time and space. As
a result, the description of these videos using only the mean
values is too coarse and hence more parameters are needed.
We need to find those parameters that co-vary with the visual
quality.

3. TEMPORAL POOLING OF PSNR

Using PSNR as a quality indicator requires to calculate a
PSNR or mean squared error (MSE) value on a frame by
frame basis. The resulting values are then averaged to de-
termine a single value for the entire video sequence. A
rudimentary adaptation to the HVS is made by evaluating the
PSNR in the YUV color space. For simplicity, mean PSNR
is mostly calculated only in the Luma channel (PSNRY

Mean),
also known as Luma PSNR. Calculating PSNRY

Mean, how-
ever, does not lead to a useful representation of the videos
with respect to quality evaluation. The use of other parame-
ters derived from PSNR results in a even more accurate visual
quality evaluation.

To illustrate this, we consider the following two differ-
ent sequences: although the PSNRY

Mean values for both se-
quences are extremely similar (31.39 dB vs. 31.53 dB), the
visual quality measured in our subjective tests is very differ-
ent (0.95 vs. 0.69 on a scale between 0 and 1). In particular,
the sequence with the slightly higher value for PSNRY
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Fig. 1: PSNR over time for two sequences
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Fig. 2: Histogram of PSNR values for two sequences

has the overall lower visual quality.
If we examine the PSNRY over time in Fig. 1 and also

the histogram of the PSNRY values for each sequence in
Fig. 2, we can easily see that the PSNRY distribution of both
squences differ significantly and especially shows that the
PSNRY values over all frames are not normally distributed.
Therefore we propose to evaluate not only the mean PSNR,
but also the minimum value, the maximum value, the stan-
dard deviation, the 90% percentile and the 10% percentile,
denoted as PSNRY

Min, PSNRY
Max, PSNRY

sDev, PSNRY
90, and

PSNRY
10, respectively.

As the Variations of PSNRY differ significantly over time
for the two sequences, we also calculate

dPSNRY
i =

∣∣PSNRY
i − PSNRY

i−1

∣∣ , (1)

representing the difference between the PSNRY of two con-
secutive frames. Once again we calculate the mean value of
dPSNRY and also calculate the mean, maximum, minimum,
standard deviation and percentiles. Hence PSNRY is not only
represented by PSNRY

Mean, but by a set of 12 different values
derived from the individual frames’ PSNRY .

As shown in Table 1 exemplary for the luma channel, only
a few of the values for both PSNRY and dPSNRY are close to
each other for the two sequences. A similar process is applied
to PSNRU and PSNRV , representing the PNSR values for the



Table 1: Different PSNRY based parameters for two se-
quences

Sequence 1 Sequence 2

Visual Quality [MOS] 0.69 0.95

PSNRY
Mean [dB] 31.53 31.39

PSNRY
Min [dB] 30.70 28.49

PSNRY
Max [dB] 33.87 36.43

PSNRY
10 [dB] 30.88 28.86

PSNRY
90 [dB] 32.52 34.84

PSNRY
sDev [dB] 0.70 2.49

dPSNRY
Mean [dB] 0.69 2.29

dPSNRY
Min [dB] 0.00 0.01

dPSNRY
Max [dB] 2.20 5.44

dPSNRY
10 [dB] 0.10 0.14

dPSNRY
90 [dB] 1.35 4.53

dPSNRY
sDev [dB] 0.55 1.82

two chroma channels. Such a brute-force approach results in
a total number of 36 PSNR different parameters.

Keep in mind that no significant additional computational
complexity is introduced by this temporal pooling step com-
pared to the commonly used PSNRMean. There the computa-
tional most expensive step is the separate calculation of PSNR
for each frame in the video sequence. The only cost increase
compared to the traditional PSNRMean might occur in mem-
ory usage as the PSNR of each frame must be stored until the
overall statistical values are computed and a slight increase in
computational load as not only the mean but also other val-
ues must be computed. This, however, only occurs once per
sequence and not for every frame in the sequence separately.

4. SUBJECTIVE TESTING

In order to validate our simple temporal pooling approach for
PSNR, we conducted extensive subjective tests. These tests
were performed in the video quality evaluation laboratory of
the Institute for Data Processing at the Technische Univer-
sität München. We employed 17 naı̈ve viewers (all students
with no or very little experience in video coding) and one ex-
pert viewer, all of them screened for visual acuity and color
blindness. The tests itself were performed in a test room com-
pliant with recommendation ITU-R BT.500 [18], using a pro-
fessional LCD display with 1080 lines (Cine-tal Cinemage
display). The decoded videos were converted to 4:2:2 YUV
by bilinear upsampling of the chrominance channels of the
4:2:0 decoder output. A HD-SDI link was used to connect the
video server to the display. To maintain the unique viewing
experience that can be achieved with HD video, the distance
between the screen and the observers was only three times the

picture height. To allow stable viewing conditions for all par-
ticipants, only two viewers took part in the test at the same
time.

The tests were carried out using a variation of the standard
DSCQS test method as proposed in [19] . This Double Stim-
ulus Unknown Reference (DSUR) test method differs from
the standard DSCQS test method, as it splits a single basic
test cell in two parts: the first repetition of the reference and
the processed video is thought to allow the test subjects to
decide which is the reference video. Only the second repe-
tition is used by the viewers to judge the quality of the pro-
cessed video in comparison to the reference. To allow the test
subjects to differentiate between relatively small quality dif-
ferences, a discrete voting scale with eleven grades ranging
from 0 to 10 was used (later rescaled to 0 to 1). In order to
verify if the test subjects were able to produce stable results,
a small number of test cases were repeated during the test.
Processing of outlier votes was done according to Annex 2
of [18], and the votes of one test subject were removed based
on this procedure. To gain one visual quality value for each
test case all valid votes were simply averaged. The 95% con-
fidence intervals of the subjective votes are below 0.07 on a
scale between 0 and 1 for all single test cases, the mean 95%
confidence interval is 0.04.

5. ENCODER SCENARIOS

We selected four different bit rates from 5.4 Mbit/s to
30 Mbit/s to represent different real life HDTV consumer
and broadcasting applications from IPTV at the lower end to
Blu-ray on the upper end on the bit rate scale.

The test sequences were chosen from the SVT high
definition multi format test set [15] with a spatial resolu-
tion of 1920 × 1080 pixel and a frame rate of 25 frames
per second (fps) was used. The particular sequences are
’CrowdRun’(CR), ’ParkJoy’(PJ), ’IntoTree’(IT) and ’Old-
TownCross’(OTC). Each of those videos was encoded at
the selected four different bit rates. This results in a qual-
ity range from ‘not acceptable’ to ‘perfect’, corresponding
to mean opinion scores (MOS) between 0.19 and 0.96 on
a scale ranging from 0 to 1. The artifacts introduced into
the videos by this encoding include pumping effects i.e. pe-
riodically changing quality, a typical result of rate control
problems, obviously visible blocking, blurring or ringing ar-
tifacts, flicker, banding i.e. unwanted visible changes in color
and similar effects. An overview of the sequences and bit
rates is given in Table 3.

The sequences were encoded using the AVC/H.264 ref-
erence software [16] version 12.4. Two significantly differ-
ent encoder settings were applied to represent the different
complexity of different application areas. The first setting is
chosen to simulate a low complexity (LC) AVC/H.264 en-
coder representative of consumer devices using a ’Main’ pro-
file according to Annex A of the AVC/H.264 Standard: many



Table 2: Correlation values for PSNR
based parameters to results of subjective
tests

PSNR Parameter Pearson Correlation

PSNRY
Mean 0.688

PSNRY
Min 0.753

PSNRY
10 0.720

PSNRU
Mean 0.588

PSNRU
Min 0.606

PSNRV
Mean 0.603

PSNRV
Min 0.635

tools that account for the high compression efficiency are dis-
abled. In contrast to this a high complexity (HC) setting aims
at getting the maximum possible quality out of this coding
technology, using a ’High’ profile representing sophisticated
broadcasting grade encoders. In addition to AVC/H.264, we
used the ’Dirac’ encoder [17] in order to investigate if tempo-
ral pooling is sensible for different coding technologies. The
development of ’Dirac’ was initiated by the British Broad-
casting Cooperation (BBC) and it is a wavelet based video
codec, originally targeting at HD resolution video material.
For ’Dirac’, the standard settings for the selected resolution
and frame rate were used. Only the bit rate was varied to
encode the videos. The used software version for Dirac is
0.7. Selected encoding settings for AVC/H.264 are given in
Table 4.

6. RESULTS

Using the results of the conducted subjective tests for the dif-
ferent encoder scenarios, we now examine how well these al-
ternatives to PSNRMean describe the visual quality of video
sequences. To evaluate the prediction accuracy, we calcu-
late the Pearson correlation coefficient between the different
pooling parameters and the experimentally determined visual
quality from our tests described in section 4 for a total of 48
data points.

As we can see in Table 2, we are able to achieve an im-
provement of nearly 10 % for PSNRY , and still between 3 %
to 5 % for PSNRU and PSNRV , respectively.

This may not seem like a huge improvement and indeed
does not even come close to corresponding correlations of
more sophisticated metrics like SSIM [13] that usally achieve
a correlation to visual quality between 0.8 to 0.9 and higher.
We should, however, keep in mind that we got this improve-
ment basically for free, without a noticeable increase of com-
putational complexity, compared to the usual calculation of
PSNRY

Mean.

7. CONCLUSION

We have seen that mean PSNR alone does not sufficiently de-
scribe the visual quality of video sequences. The video se-
quences were encoded to real life bit rates to represent con-
sumer and broadcasting applications by using different en-
coders or different encoder settings. Even two sequences with
extremely similar mean PSNR values can exhibit vastly dif-
ferent visual qualities.

If we, however, exploit already existing per-frame knowl-
edge of the video sequences by more extensive temporal pool-
ing, the prediction accuracy of PSNR can be increased by
nearly 10 %. Although our current results are only based on
a limited test set of 48 data points, we can see that alternative
temporal pooling methods can describe the statistical proper-
ties of the video sequence better than the traditional approach
of only averaging the PSNR over all frames. Furthermore
the added computational complexity compared to averaging
is negligible.

While we have only considered PSNR in this contribu-
tion it may very well be that other frame-based visual quality
metrics (including, but not limited to [9–13]) when applied to
video sequences might also benefit from this simple temporal
pooling approach.
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Table 3: Tested video sequences

Sequence Frame Rate Bit Rate [MBit/s]

CrowdRun 25 fps 8.4 / 12.7 / 19.2 / 28.5
IntoTree 25 fps 5.7 / 10.4 / 13.1 / 17.1
OldtownCross 25 fps 5.4 / 9.6 / 13.7 / 19.0
ParkJoy 25 fps 9.0 / 12.6 / 20.1 / 30.9

Table 4: Selected encoder settings for
AVC/H.264

LC HC

Encoder JM 12.4
Profile Main High
Reference Frames 2 5
R/D Optimization Fast Mode On
Search Range 32 128
B-Frames 2 5
Hierarchical Encoding On On
Temporal Levels 2 4
Intra Period 1 second
Deblocking On On
8x8 Transform Off On

http://www.ldv.ei.tum.de/lehrstuhl/team/Members/tobias/sequences
http://www.ldv.ei.tum.de/lehrstuhl/team/Members/tobias/sequences
http://iphome.hhi.de/suehring/tml/index.htm
http://iphome.hhi.de/suehring/tml/index.htm
http://dirac.sourceforge.net

	 Introduction
	 Temporal Pooling
	 Encoder Scenarios
	 Subjective Testing
	 Temporal Pooling of PSNR
	 Results
	 Conclusion
	 References

