
Beyond Standard Noise Models: Evaluating Denoising

Algorithms with Respect to Realistic Camera Noise

Tamara Seybold

Arnold & Richter Cine Technik, T€urkenstraße 89

80799 M€unchen, Germany

tseybold@arri.de

Marion Knopp, Christian Keimel and Walter Stechele

Technische Universit€at M€unchen, Arcisstraße 21

80333 M€unchen, Germany

The development and tuning of denoising algorithms is usually based on readily processed test

images that are arti¯cially degraded with additive white Gaussian noise (AWGN). While

AWGN allows us to easily generate test data in a repeatable manner, it does not re°ect the noise
characteristics in a real digital camera. Realistic camera noise is signal-dependent and spatially

correlated due to the demosaicking step required to obtain full-color images. Hence, the noise

characteristic is fundamentally di®erent from AWGN. Using such unrealistic data to test,

optimize and compare denoising algorithms may lead to incorrect parameter tuning or subop-
timal choices in research on denoising algorithms.

In this paper, we therefore propose an approach to evaluate denoising algorithms with

respect to realistic camera noise: we describe a new camera noise model that includes the full
processing chain of a single sensor camera. We determine the visual quality of noisy and

denoised test sequences using a subjective test with 18 participants. We show that the noise

characteristics have a signi¯cant e®ect on visual quality. Quality metrics, which are required to

compare denoising results, are applied, and we ¯rst evaluate the performance of 12 full-reference
metrics. As no-reference metrics are especially useful for parameter tuning, we additionally

evaluate ¯ve no-reference metrics with our realistic test data. We conclude that a more realistic

noise model should be used in future research to improve the quality estimation of digital images

and videos and to improve the research on denoising algorithms.
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1. Introduction

The demand for ever higher resolution has driven an increase in pixel count, resulting

in a lower pixel pitch (size of each pixel on the sensor). Thus, the amount of light

trapped by a single pixel is lower, and the signal-to-noise ratio decreases. This is

especially severe under low light conditions. Hence, algorithmic methods to reduce

the noise are key for applications ranging from professional movie shots to smart

phone recordings. Denoising has been studied extensively and various methods have

been developed [1– 6].
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The development and tuning of these algorithms is typically based upon standard

test datasets like the Kodak image set [7]. These datasets include a collection of

representative reference images. To evaluate denoising algorithms, the reference

images are degraded using arti¯cial noise, to obtain pairs of a reference and a noisy

image. In the simplest case, the results of the denoising algorithms are subsequently

evaluated using the di®erence to the reference image (PSNR). As this measure does

not correlate well with human perception of visual quality, several more sophisti-

cated quality metrics have been proposed [8–15].

Typically, the mentioned noisy images are generated by applying additive white

Gaussian noise (AWGN) to the reference images. While AWGN allows us to easily

generate noisy images in a repeatable manner, it does not re°ect the properties of

realistic camera noise. In [16] it is shown that noise in the raw sensor data is signal

dependent. Three major steps, shown in Fig. 1, are required to transform the raw

sensor data to an image that can be viewed on a display device (display-domain

image): The ¯rst step is the white balance. Since the sensor data only provides one

color value per pixel (Bayer mask) demosaicking is required, as a second step, to

obtain a full-color image. In a third step, a color transformation is applied to

transform the image into the monitor color space. Previous work showed that the

second step, the demosaicking, has a signi¯cant e®ect on denoising results using the

Kodak data set, as it introduces a spatial correlation in the noise characteristics [17].

Further, the color transformation changes the noise distribution in a nonlinear

manner. Hence, the realistic noise characteristic in the camera data is fundamentally

di®erent from AWGN.

Thus, the complete processing pipeline shown in Fig. 1 must be considered to

generate test images with realistic camera noise. Some recent denoising methods

implement more realistic camera noise models, e.g. [18–20]. To evaluate these algo-

rithms representative result images based on real camera data are shown. To

quantitatively compare their results simple models as AWGN are used. When

denoising algorithms are evaluated and optimized using unrealistic test data, this,

however, may lead to wrong parameter tuning or suboptimal choices in research and

development of denoising algorithms.

In this paper, we propose an approach to evaluate denoising algorithms with

respect to realistic camera noise. Following our ¯rst results in [21], we discuss the

individual steps of our approach in detail and extend our work to blind evaluation of

denoising results.

Fig. 1. Image processing pipeline of a single-sensor camera.
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We ¯rst describe a new camera noise model that includes the complete processing

chain. Further, two state-of-the-art denoising algorithms are evaluated with respect

to their denoising results on test images with AWGN and images generated using our

new realistic camera noise model. To evaluate the visual quality of the denoised

images a reliable quality metric is required. Up until now, quality metrics have not

been tested with respect to realistic camera noise. Thus, to determine the visual

quality of the test images in a reliable way, a subjective test with human observers is

performed. Further, the results of the subjective test are compared to a large set of

existing quality metrics. We analyze in detail how the individual processing steps

in°uence the performance of these metrics. This allows us to identify the most

suitable metrics to evaluate denoising algorithms with respect to realistic camera

noise.

Blind quality evaluation, i.e. rating the visual quality without a reference image,

is crucial for the automatic parameter tuning of denoising algorithms. Furthermore,

these metrics would enable us to directly use test data without reference. Thus, real

camera data could be used for denoising evaluation directly. So-called no-reference

metrics (NR metrics) are therefore of high interest for the evaluation and parameter

tuning of denoising algorithms. As recent research results on NR metrics are very

promising [22–25], we especially discuss blind image quality evaluation in this paper.

The remainder of this paper is organized as follows: First, we discuss the camera

noise characteristics and describe the processing steps that in°uence the noise

characteristics in Sec. 2. The test setup for the subsequent experiments including the

subjective test is outlined in Sec. 3. We discuss the subjective quality results and we

compare the performance of full-reference and no-reference quality metrics with re-

spect to realistic camera noise in Sec. 4. In Sec. 5, two state-of-the-art denoising

algorithms are evaluated using test images with AWGN and test images with the

new realistic camera noise model and quality metrics are compared using the

Spearman correlation over all the test sequences. Finally, we conclude in Sec. 6.

2. Camera Noise

For a realistic denoising evaluation we need a realistic model for the camera noise. To

¯nd this model, we ¯rst measure the real camera noise in the raw domain. We then

discuss the in°uence of the camera processing pipeline.

2.1. Camera noise in the raw data

To measure camera noise in the raw images we take a series of exposures and cal-

culate the noise variance using the photon transfer method [26]. While this mea-

surement can be performed with any camera, we use the ARRI Alexa camera, as it

delivers uncompressed raw data in 16 bit precision. Since the data is uncompressed,

we can expect unaltered measurement results. Furthermore, the individual camera

processing steps are known for this camera [27]. Our method can equivalently be used

for other cameras.
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The Alexa camera has been developed for motion picture recordings in digital

cinema applications. It has a CMOS sensor with a resolution of 2880� 1620. In front

of the sensor, the camera has a ¯lter pack composed of an infrared cut-o® ¯lter, an

ultraviolet cut-o® ¯lter and a low pass ¯lter to reduce aliasing. The color ¯lter array

(CFA), which is located between the ¯lter pack and the sensor, is a Bayer mask.

The photon transfer method [26], uses two subsequent frames recorded at con-

stant and homogenous lighting conditions. The noise variance is calculated as the

mean of the di®erence between these two frames, the corresponding signal value

is calculated as the mean over all the signal values in these frames. The graph in

Fig. 2(a) shows the variance plotted over the respective mean signal value. The

variance of the sensor noise can be approximated by a linear model. This ¯nding

matches the results reported in [16] where other cameras have been studied. We see,

however, one di®erence in the region around signal value 0:1� 104. The step in the

variance curve is due to a special characteristic of the Alexa sensor, the dual-gain

read-out technology. This means, the sensor read-out of the Alexa provides two

di®erent paths with di®erent ampli¯cation (dual-gain read-out). The low ampli¯ed

path provides the data for the signal range starting from 0:1� 104. The high

(a) Variance

(b) Distribution

Fig. 2. Variance and distribution of the noise in the raw domain (signal values in 16 bit precision).
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ampli¯ed path saturates in the high signal values, but for the low signal values it

provides a signi¯cantly higher signal-to-noise ratio. The read-out noise (o®set of the

variance curve) is reduced, thus the dual-gain technology enhances the low light

performance of the camera. The two read-out paths are combined in the region

around signal value 0:1� 104, which explains the step in the variance curve.

The distribution is very similar to a Gaussian distribution. In Fig. 2(b) the dis-

tribution at signal level 1265 is shown with the Gaussian approximation. That means

we can well approximate the sensor noise n in the raw domain using a Gaussian

distribution with signal-dependent variance.

n � Nð0; �ðxÞÞ with �2ðxÞ ¼ mðxÞx þ tðxÞ: ð1Þ
The variance �2ðxÞ is approximated as a piecewise linear function depending on the

signal x, with the slope mðxÞ and the intercept tðxÞ based on the measurement data

in Fig. 2(a). Because of the dual-gain read-out the values for mðxÞ and tðxÞ are

piecewise constant.

Thus we found a model for the camera noise in the raw data. The signal values

in the raw data are in linear domain, that means the signal value is proportional to

the amount of light collected by the sensor and the raw data provides only one

color value per pixel according to the Bayer pattern. Therefore the data must be

further processed to obtain a full-color display-domain image that can be used for

testing.

2.2. Camera noise in the processing pipeline

In the previous section we presented a realistic model for the camera noise in the raw

data. As the quality estimation of test images requires images in the display domain,

we need to consider all the processing steps to obtain display-domain test images

with realistic camera noise. Three main steps are performed:

(1) White Balance,

(2) Demosaicking,

(3) Color Transformations.

After the three steps a display-domain image is obtained. In the following, we discuss

the in°uence of the individual steps on the camera noise characteristics for a detailed

understanding.

White balance is a known gain factor that is di®erent for each color. While the

white balance directly in°uences the noise level in the di®erent color channels, it does

not a®ect the distribution, as it is a linear transformation.

The next step is to create a full-color image with three color values per pixel by

demosaicking the white-balanced raw data. Di®erent demosaicking algorithms can

be used and the noise characteristic is changed depending on the algorithm. The

demosaicking algorithm we use in our test was a standard directional interpolation

method using a 5� 5 window. The green interpolation is a gradient based decision
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between horizontal and vertical linear interpolation. The red and blue interpolation

additionally uses green high pass information for correcting the chroma values. Like

most debayering approaches the algorithm is nonlinear and uses neighboring values,

which introduces a spatial correlation between neighboring pixel values and a

chromatic correlation between the three color channels.

The in°uence of the demosaicking step on the noise characteristics is illustrated in

Fig. 3. On the left, a test image with uncorrelated noise is shown, which is processed

without the demosaicking step. The test image on the right was processed including

the demosaicking step, and thus the noise in the image is spatially correlated. The

respective di®erence images are obtained by calculating the di®erence Id ¼
Iref � Inoisy between the reference image Iref and the respective noisy image Inoisy.

While the di®erence image Id;a in Fig. 3(c) shows uncorrelated noise, the spatially

correlated noise due to demosaicking is shown in Fig. 3(d). Both di®erence images are

scaled the same way to visualize the e®ect unbiased. We see that the noise after

demosaicking is structured and of coarser grain. This might lead to a lower perfor-

mance of standard denoising algorithms.

The third step, the color transformation, is composed of di®erent steps, usually a

nonlinear tone mapping, a color space conversion and a gamma transformation.

While the exact color transformation is an individual choice, it is an essential step to

map the linear raw values onto displayable signals. The nonlinear tone mapping and

the gamma transformation lead to a nonlinear signal-dependence of the noise and to

(a) Inoisy;a, no demosaicking (b) Inoisy;b, with demosaicking

(c) Id;a, uncorrelated noise (d) Id;b, spatially correlated noise

Fig. 3. Crop of the sequence `̀ City". Noisy image (left) and noisy image with demosaicking (right). In the

second row the respective di®erence image Id ¼ Iref � Inoisy, scaled for display.
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an unknown noise distribution. The color space conversion can strengthen the

chromatic and thereby the spatial correlation.

The images in display domain, therefore, have a noise characteristic that is spa-

tially correlated, signal-dependent and with an unknown noise distribution. Hence,

the noise characteristic is very di®erent to AWGN in the display domain, which is

the adequate domain for human observers and thus the appropriate domain for the

evaluation of denoising algorithms. For a realistic evaluation, test data in the display

domain is required. We show how to obtain realistic test data taking into account the

complete camera processing pipeline in the next section.

3. Test Setup

To evaluate denoising algorithms, our test setup consists of a reference image, a noisy

image and a denoised image. While noisy images could be obtained in the form of real

camera data, we would lack the corresponding reference imagery. Applying noise to a

readily processed image, e.g. an image from the Kodak data set, cannot be used for

tests with realistic camera noise, as it is necessary to include all the processing steps

described in Sec. 2.2. To obtain realistic test data, a full-color reference in the linear

domain is required. We obtained this reference data from a rendered 3D scene.

3.1. Reference sequences

For our test we use two di®erent scenarios, one pan over a city, named `̀ city",

Fig. 4(a), and a landscape sequence obtained by moving a static image by a few pixels

to provide a video sequence, named `̀ landscape", Fig. 4(b). The sequences have been

chosen to re°ect typical challenges in denoising natural images. The city sequence is

(a) city (b) landscape

Fig. 4. One frame of the computer-generated test sequence.
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dominated by horizontal and vertical edges and squares, whereas the landscape

sequence has a lot of ¯ne details that are not part of larger structures. In the land-

scape sequence, the optical low pass ¯lter of the simulated camera has been adjusted

to be less restrictive such that more high-frequency content is left in the images. The

sequences are 16 bit data rendered in linear domain. To incorporate the optics of a

camera system the images are multiplied in the Fourier domain with the optical

transfer function of the camera. This step takes into account the di®raction limited

lens, the optical low pass ¯lter and the pixel aperture. For details we refer to [28]. The

rendering of the 3D scene has to provide high resolution images to avoid aliasing

e®ects in the camera optics simulation. We use a resolution of 40962 pixels to obtain

10242-sized images as simulation output. This approach provides realistic reference

data in linear domain. Applying the color transformation to this data provides a

display-domain reference image.

3.2. Test sequences

Besides the reference images, noisy test images are required for denoising evaluation.

To generate these noisy images, we use the most usual and most simple model,

AWGN in display domain, and our new realistic camera noise model. Additionally

we use noise models that enable us to evaluate the impact on visual quality of the two

main di®erences between camera noise and AWGN individually: signal-dependence

and spatial correlation through demosaicking.

In Fig. 5 the usual AWGN model corresponds to the simulation path named

`̀ noisy AWGN uncorrelated". We use AWGN with a standard deviation of 1100 in

16 bit domain, which is equivalent to approximately 1:7% of the signal range. To

Fig. 5. Processing of simulated sensor data for the test using signal-dependent noise (SD) and AWGN.
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evaluate the in°uence of the demosaicking step on visual quality, we simulate

AWGN and apply a Bayer mask with subsequent demosaicking, which is represented

by the simulation path `̀ noisy AWGN demosaicked" in Fig. 5. While this does not

correspond to real camera data, we can expect more realistic results by including this

step into the usual AWGN model. To obtain signal-dependent noise, we replace the

AWGN based noise model with the signal-dependent camera noise from Sec. 2 added

in linear domain (`̀ noisy SD uncorrelated" in Fig. 5). The noise level of the camera

noise in our test sequences corresponds to a sensitivity of 3200 ASA. To obtain

realistic camera noise the demosaicking step must be included, thus the simulation

path for realistic camera noise is `̀ noisy SD demosaicked" in Fig. 5.

To obtain denoised sequences, all the noisy sequences from Fig. 5 are denoised

with two di®erent denoising algorithms, BM3D [4] and BLS-GSM [3].

3.3. Subjective test design

With the approach described above, we obtained reference, noisy and denoised

images. To evaluate denoising algorithms, the visual quality of the noisy and the

respective denoised image must be compared. We thus require a metric, which can

re°ect the visual quality of the noisy and denoised test images similar to the human

perception. However, to the best of our knowledge, the performance of quality

metrics has not been validated for realistic camera noise.

The validation of quality metrics is based on databases that contain test images

with arti¯cial degradations and respective results of subjective tests, in which the

test participants assess the perceived visual quality of these test images. To deter-

mine quality metric performance, the metrics are applied to the database test images

and the results are compared to the respective subjective test result. While databases

as the LIVE [29], the TID2008 [30] and the CSIQ [31] database were used to evaluate

state-of-the-art quality metric performance with respect to di®erent noise models,

none of them uses realistic camera noise. The performance of the quality metrics is

thus unknown for camera noise.

To obtain reliable information on the visual quality of our noisy and denoised test

sequences, we conduct a subjective test with our test material. We used the double

stimulus DSIS methodology with a undistorted reference and impaired noisy se-

quence according to ITU-R BT.500. A discrete scale from 1 to 10, representing a

impairment range of `̀ very annoying" to `̀ imperceptible", was used. The test par-

ticipants were 18 students, aged between 20 and 30. The task for the participants was

to assess the perceived impairment of the images. Before each test, a training session

was performed and the expected distortion, blur and noise, were mentioned in this

training. The test was performed in the ITU-R BT.500 compliant video quality

evaluation laboratory at the Institute for Data Processing at Technische Universität
München. For displaying the videos, a color calibrated Sony BVM-L230 reference

LCD display with a screen diagonal of 23 inches was used. To get reliable results, the

outlier were removed in the post processing of the subjects' votes. Votes were
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removed, if they deviated more than 2� from the mean for a sequence. Using this

criterion, 4:6% of all votes were discarded. After outlier removal, the mean opinion

score (MOS) was determined for the di®erent test images.

The subjective test results provide reliable values for the subjective quality of all

our test images. These results enable us to compare the visual quality of the noisy

and denoised test sequences. Furthermore, the test data enables us to determine the

performance of quality metrics with respect to realistic camera noise.

4. Visual Quality of Sequences Degraded by Camera Noise

The performance of denoising algorithms is evaluated by comparing the quality of a

denoised image to the quality of the respective noisy image. To determine the per-

formance of denoising algorithms we therefore need to evaluate the quality of the

noisy images ¯rst.

4.1. Subjective quality

As described in Sec 3.2, four di®erent noise models were used in our test: the usual

AWGN model, AWGN with demosaicking, signal-dependent noise without demo-

saicking and ¯nally the realistic camera noise model ��� signal-dependent noise with

demosaicking. In this section, we evaluate the visual quality of the noisy test

sequences and analyze the main di®erences between the realistic camera noise and

AWGN: spatial correlation introduced through demosaicking and signal-dependence.

In Fig. 6(a) the MOS results are shown for sequences without the demosaicking

step, thus containing uncorrelated noise, on the left, and the results for noisy

sequences with demosaicking are shown on the right. We notice that the demo-

saicking leads to a lower MOS for all three test sequences. The MOS of the city

sequence with AWGN is about 3 scores lower when demosaicking is included. Re-

garding the sequences with signal-dependent noise, the MOS is 0.5 lower for the city

uncorrelated demosaicked
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City, AWGN
City, sig.−dep.
Landscape, sig.−dep.

(a)

uncorrelated demosaicked
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(b)

Fig. 6. The MOS and PSNR results for the test sequences `̀ City" and `̀ Landscape" using the traditional

AWGN model (dashed) and the realistic signal-dependent noise (solid lines). The uncorrelated noise,

processed without demosaicking, is shown on the left, the results with demosaicking on the right.
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sequence and 2.3 lower for the landscape sequence when demosaicking is included.

The demosaicking changes the di®erence in visual quality of the sequences: While it

is noticeable that the MOS for the uncorrelated noisy landscape sequence is quite

good (7.1) compared to the respective city sequence (4.9), the di®erence is much

smaller (0.4) when demosaicking is included. This may be explained by the image

content: While the ¯ne grain of the uncorrelated noise that is hardly di®erentiable to

the sand, the coarser grain of the spatially correlated noise that is clearly visible in

the landscape sequence. For all three test sequences the spatially correlated noise is

perceived as more annoying than the uncorrelated noise. Furthermore, the demo-

saicking changes the di®erence in visual quality of di®erent noisy images.

To re°ect realistic camera noise a signal-dependent noise model is required. The

noise level of signal-dependent noise depends on the signal and thus on the image

content. Through the color transformation, the signal-dependence is nonlinear in

display-domain images, usually noise is most visible in dark regions of the image. The

noise level of signal-dependent noise is varying with the image content and thus not

directly comparable to AWGN. For the city sequence we simulated both AWGN and

the signal-dependent noise. While AWGN is classi¯ed as less annoying than signal-

dependent noise when it is uncorrelated, AWGN with demosaicking is classi¯ed as

more annoying than signal-dependent noise with demosaicking. That means, the

relative order is changed with the noise model.

The MOS results showed that demosaicking has a signi¯cant impact on visual

quality, in our test it leads to a lower visual quality of the noisy sequences. The noise

model can change the di®erence and the relative order of the visual quality of the test

sequences.

The e®ect of the noise model on the PSNR results, shown in Fig. 6(b), shows

clearly di®erent results than for the MOS. While the decrease with demosaicking is

correct for the landscape sequence, very di®erent results are obtained for the city

sequences: The PSNR is approximatly constant when AWGN is compared to

AWGN with demosaicking, and regarding the signal-dependent noise it is about 2dB

higher for the demosaicked city image (33.95 dB). With demosaicking, the quality of

the city sequence is rated much higher compared to the landscape sequence, thus the

relative order does not correspond to the MOS results.

In this section, we have seen that the noise characteristics have a signi¯cant e®ect

on the subjective quality. Interestingly, subjective quality in terms of MOS does not

match the PSNR of the test sequences. While the PSNR is still widely used, it is well

known that it is not optimal for visual quality estimation. Therefore, we evaluate

more sophisticated metrics that correlates better with the visual quality given by the

MOS results of our subjective test in the next section.

4.2. Full-reference quality metrics

To improve the correlation with the perceived visual quality, adaptions of the

mentioned PSNR were proposed, such as the visual signal-to-noise ratio (VSNR) [10]
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and the human visual system based PSNR (PSNR-HVS/PSNR-HVSM) [11]. The

performance of several quality metrics including the above has been evaluated using

the TID2008 database in [30] that contains a test setup with di®erent types of noise,

including spatially correlated noise. In this test the PSNR-HVS achieved a high

correlation with the subjective test results. We therefore can expect good results

using this metric for our test data.

Other approaches that showed good results for various degradations, including

white noise and Gaussian blur [32], are structural algorithms, as the structural

similarity (SSIM) index [8] and the multiscale SSIM (MSSIM) [9], and information-

theoretic algorithms, as the visual information ¯delity (VIF) [12] and the information

¯delity criterion (IFC) [33].

We add three recently proposed metrics that are adaptions of the PSNR and

SSIM and showed high correlation based on tests with di®erent standard databases,

the PSNR-HMA [14], the `̀ information content weighted PSNR" (IW-PSNR) and

the `̀ information content weighted SSIM" (IW-SSIM) [15]. As we work on color

image sequences, we add a metric named `̀ color-image-di®erence" (CID), which is

designed for color images speci¯cally [34].

We use the publicly accessible Matlab package `̀ metrix mux" for most full-ref-

erence metrics. For PSNR-HVS, PSNR-HMA, IW-PSNR, IW-SSIM and CID we use

the Matlab code provided by the authors. While some metrics have parameters that

could be tuned, we stick to the default parameters for all the test sequences to

achieve comparable results.

An optimal quality metric would show the same tendencies and relative order as

the MOS results described in the previous section. One of our main results from the

previous section was that including the demosaicking step in the processing pipeline

of the noisy test images signi¯cantly reduces visual quality. That means, for both

noise models the MOS is lower when demosaicking is included. In contrast, the SSIM

is higher for the spatially correlated noise with demosaicking (Fig. 7(a)), the relative

order of the sequences including demosaicking is thus incorrect.

The MSSIM better matches the subjective quality, as it shows a lower value for

the noise after demosaicking, see the MSSIM in Fig. 7(b). IW-SSIM is not shown, as

the results are very similar. Also the VIF, IFC, PSNR-HVS, PSNSR-HMA and

IW-PSNR and CID rate the noisy images including demosaicking lower and thus

re°ect well the subjective quality, Figs. 7(c) shows PSNR-HVS and 7(d) the VIF.

CID in Fig. 7(f) was included as it speci¯cally works on color images. Despite that

the noise seems very colored in the demosaicked landscape sequence, the quality of is

rated very high using CID, which is incorrect. Additionally the order of AWGN and

signal-dependent noise doesn't match the MOS result.

In summary, none of the tested metric is able to perfectly re°ect the visual

quality of all the noisy sequences as given by the MOS. However, most of the

metrics showed lower results for the noisy images when demosaicking is included

compared to the uncorrelated noise, and thus matched this important tendency

shown by the MOS.
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4.3. No-reference quality metrics

A test setup to compare denoising algorithms usually works with pairs of a reference

and the corresponding degraded noisy image. However, in real applications that

require a denoising step, no reference image is available, which is the reason why real

camera data cannot be used directly for a quantitative evaluation. To make use of

real-world data that does not provide a reference, e.g. the new image test set pro-

posed in [27], metrics that can evaluate the visual quality without a reference would

be necessary. Besides, automatic parameter tuning would require such NR metrics.
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Fig. 7. Quality metric results for the test sequences `̀ City" and `̀ Landscape" using the traditional

AWGN model (dashed) and the realistic signal-dependent noise (solid lines). The uncorrelated noise,

processed without demosaicking, is shown on the left, the results with demosaicking on the right.
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The best denoising parameters depend on the image content, and NR metrics would

enable to adjust the parameters for each image adaptively. We thus extend our

recent work [21] to general no-reference (NR) metrics evaluation.

The recent progress in NR metrics is encouraging. In [13], a metric for parameter

tuning, the `̀ MetricQ" is shown to enhance denoising performance. As the metric

showed a relatively low correlation in our previous work [21], we try several adaptions

in this paper. In 2010, Moorthy and Bovik published the NR metric `̀ blind image

quality index" (BIQI) [35]. The metrics are usually evaluated using the LIVE data-

base [32] that provides ¯ve di®erent types of degradation: JPEG, JPEG2000 (JP2K),

white noise, blur and fast fading. The two most relevant distortions for denoising are

white noise and blur; we thus compare and select the methods mainly based on the

Spearman correlation for these two types of distortion. For both distortion types a

higher correlation than PSNR is reported for BIQI, so we include it in our test.

Since then, ¯ve other quality metrics have been published. The `̀ general regres-

sion neural network (GRNN)", proposed 2011 [36], can provide results highly cor-

relating to the human perception when the right dataset was chosen in the training.

For in the most relevant criteria, white noise and blur, the correlation results

strongly depends on the dataset: a high correlation for WN comes with a low cor-

relation for blur and vice versa. Therefore we conclude that it may not be appropriate

for denoising tests.

The NR metric `̀ distortion identi¯cation-based image verity and integrity

(DIIVINE)" [23] shows a very high correlation with the mean opinion score of the

LIVE database of 0.98 for the white noise distortion and a considerable correlation

coe±cient of 0.92 for blur. It thus clearly outperforms a NR metric named BLIINDS

[37]. An upgraded version thereof, named BLIINDS II [24] was proposed in 2012.

However, we do not use it in our test, as it shows an extremely low correlation for

white noise (0.1) and thus does not seem to be appropriate for denoising tests.

Two other recently published NR metrics show promising results: the `̀ blind/

referenceless image spatial quality evaluator" (BRISQUE) [25] shows a lower cor-

relation for white noise compared to DIIVINE, however, the correlation coe±cient is

higher for blur. We thus include it in our tests. NIQE [22], which stands for `̀ natural

image quality evaluator", outperforms DIIVINE and BRISQUE in both white noise

and blur and thus is the most promising method included in our test.

Figure 8 shows the NR-metric results for the noisy test data. MetricQ shows a

very high quality for the demosaicked sequences compared to the sequences with

uncorrelated noise, whereas the MOS indicates a lower quality for the demosaicked

sequences. The same problem we have seen before with the FR metrics SSIM and

PSNR. We tried to calculate the anisotropy map di®erently, however all the MetricQ

versions were not able to re°ect the decrase when demosaicking is included for the

noisy data. As the results of the di®erence versions are very similar, we show only the

original version in Fig. 8(a).

While BIQI shows the same problem (Fig. 8(d)), the metric NIQE in Fig. 8(b)

shows for a part of the sequences a lower quality when demosaicking is included, it
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matches the MOS results for the sequences with signal-dependent noise. While

DIIVINE in Fig. 8(c) shows the correct tendency for the landscape sequence, it rates

the demosaicked sequences with higher quality for the city sequences, which does not

match the MOS results. Regarding the relative order of the test sequences, the MOS

value only shows a small di®erence in the absolute quality of the two sequences,

while, according to BIQI and DIIVINE, the landscape sequence has a clearly higher

quality rating.

While most metrics, except CID, rated the sequences containing signal-dependent

noise lower than the sequences with AWGN, all no-reference metrics rate the

sequences with signal-dependent noise higher compared to the AWGN sequences.

None of the tested metrics, however, evaluated the sequences corresponding to the

MOS, which indicates higher quality of the sequence with signal-dependent noise

compared to the AWGN sequence when demosaicking is included, but a clearly lower

quality for the sequence with uncorrelated signal-dependent noise compared to the

sequence with uncorrelated AWGN.

The NR metrics seem to less re°ect the MOS result than the FR metrics. Espe-

cially the relative order of the sequences with di®erent image content is more di±cult

to estimate without a reference.
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Fig. 8. No-reference quality metric results for the test sequences `̀ City" and `̀ Landscape" using the

traditional AWGN model (dashed) and the realistic signal-dependent noise (solid lines). The uncorrelated

noise, processed without demosaicking, is shown on the left, the results with demosaicking on the right.
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5. Quality Assessment of Denoising Results

In the last section we discussed the subjective quality and the quality metric per-

formance for noisy sequences. In this section, we discuss the visual quality of the

denoised test sequences and based on these results we evaluate the performance of

the quality metrics for the denoised test images. Finally we identify the most suitable

quality metrics for denoising algorithm evaluation.

5.1. Subjective quality

We used two di®erent state-of-the-art denoising methods, BM3D [4] and BLS-GSM

[3]. In Fig. 9(a) the MOS results for denoised sequences are shown. In the subsequent

plots the two left results show the quality of the usual AWGNmodel and the AWGN
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BLS-GSM [3].
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model with demosaicking, whereas the two results on the right show the quality for

signal-dependent noise and for signal-dependent noise with demosaicking. The last

corresponds to the realistic camera noise model.

The noise model signi¯cantly a®ects the visual quality of denoising results. In-

cluding the demosaicking step into the noise simulation, leads to a MOS that is up to

3 scores lower. Thus, denoising uncorrelated noise is easier than denoising spatially

correlated noise. The signal-dependence also a®ects the denoising performance: BLS-

GSM achieves a 1.7 lower MOS for uncorrelated signal-dependent noise compared to

AWGN. When both signal-dependence and demosaicking is included, thus realistic

camera noise is used, the quality of the BLS-GSM result is even lower than the

quality of the noisy sequence, thus no improvement is achieved with denoising. This

shows that it is crucial to use an adequate model in the development of denoising

algorithms.

We found that the noise model has a signi¯cant e®ect on the visual quality of

denoising results. We have shown that demosaicking decreases denoising perfor-

mance of both tested algorithms signi¯cantly and found that the signal-dependence

leads to a lower visual quality of the BLS-GSM results.

5.2. Full-reference quality metrics

Optimal quality metrics should show the same tendencies and relative order as the

MOS results. As described above, the demosaicking leads to a lower MOS, thus the

lines in Fig. 9(a) are decreasing. This is re°ected by the MSSIM, VIF, PSNR-HVS

and CID, see Figs. 9(c)–9(f). The PSNR in Fig. 9(b) matches this tendency for the

denoised sequences except for the sequence with signal-dependent noise denoised

with BLS-GSM. The PSNR-HMA shows very similar tendency like the PSNR-HVS

and thus is not shown. Regarding the relative order of the sequences with realistic

camera noise, the VIF is the only metric in our test that rates the denoised

sequences using BLS-GSM lower than the noisy sequence, which re°ects the MOS

(see `̀ dem. SD" in Fig. 9(c)). However, the VIF rates the sequences denoised with

BLS-GSM lower for the other noise types, too, which does not re°ect the MOS

results.

Comparing our subjective test results to the quality metric results shows that

none of the tested metrics re°ects the MOS perfectly. To determine the metrics that

correlate best with the perceived quality, we evaluate the overall metric performance

by means of the Spearman correlation coe±cient.

Figure 10 shows the correlation coe±cients for the full-reference metrics. The

correlation coe±cients with and without the Landscape sequences are shown. Most

of the metrics show lower correlation coe±cients when both test sequences are

compared. The most stable results are given by PSNR-HMA and IWPSNR. The

highest correlation to the subjective quality over the entire test is achieved by

the full-reference metrics IFC, VIF, PSNR-HVS and PSNR-HMA. Thus, among the

tested metrics these are the most suitable for the evaluation of denoising algorithms.

Beyond Standard Noise Models 161



5.3. No-reference quality metrics

The visual quality of the denoised sequences is higher than the noisy sequences,

except the BLS-GSM algorithm applied to realistic camera noise. BM3D gives a

higher MOS rating than BLS-GSM and demosaicking leads to a lower visual quality

of the denoising results. An optimal metric would re°ect these ¯ndings.

While the MetricQ indicates a lower quality for the demosaicked and

denoised AWGN test sequences in Fig. 11(d), it does not show this tendency for the
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signal-dependent noise with demosaicking. We tested three versions in addition to

the original version: MetricQ with an anisotropy map that was calculated on the

same noisy images (MetricQ AM noisy). This is a reasonable setup, as the noisy

image is known when denoising is applied. Additionally, we included two versions

that are using the reference data partially. In a second new version, the MetricQ with

the same anisotropy map (MetricQ AM const noisy) is used for all the di®erent

degradation types. As the authors proposed to use the most degraded image in this

case, we used the noisy images with debayering included. In the third version the

anisotropy map was calculated on the reference image (MetricQ AM const ref).

Figure 12 shows the Spearman correlation coe±cient over all the test sequences for

the di®erent variants of MetricQ. Compared to the original MetricQ, the variants

using degraded images correlate less with human perception. The MetricQ with the

anisotropy map calculated on the reference image (MetricQ AM const ref) shows a

higher correlation.

While DIIVINE rates the denoising results with demosaicking higher compared to

the denoised sequences without demosaicking, BIQI, NIQE and MetricQ show a

constant or slightly decrease in quality when demosaicking is included before

denoising, thus partially match the MOS result. DIIVINE rates all the noisy

sequences higher than the denoised sequences. This does not match the MOS result.

This may be due to a high sensitivity to blurring in the DIIVINE metric.

The noise model has a signi¯cant e®ect on the visual quality of denoising results

and none of the NR metrics in our test fully re°ects the MOS. To determine the NR

metrics that correlate best with the perceived quality, we evaluate the overall metric

performance by means of the Spearman correlation coe±cient, shown in Fig. 13.

The NR metrics achieve a much lower correlation compared to the FR metrics. The

highest correlation coe±cient is 0.6 for the BIQI metric, which additionally seems to

be most robust to the image content. While NIQE and MetricQ achieve a consid-

erable correlation coe±cient of 0.4 on the city test set, BRISQUE practically does

not correlate to the MOS results (0.08) and DIIVINE even shows a negative cor-

relation coe±cient, as it rates all the denoised sequences with a lower quality than

the noisy sequence. We thus did not ¯nd a no-reference metric re°ecting the MOS in

our test.
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Fig. 12. Spearman correlation coe±cients of MetricQ variants.
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While the correlation coe±cients given in the literature usually are around 0.9, we

have seen relatively low correlation coe±cients between visual quality and metric

result. This is mainly due to the di®erent approach of calculating the correlation

coe±cients: in the literature correlation coe±cients are usually given for a single

degradation type (e.g. white noise) separately. This means the correlation coe±cient

represents how well a metric can compare a noisy image to another noisy image. In

denoising evaluation, however, the metric must cope with di®erent degradations that

occur in one image simultaneously and ¯nd the best tradeo®, i.e. the best image.

Thus the correlation coe±cient has to be calculated over the denoised and the noisy

test sequences to obtain useful information about how well a metric is suited for

denoising evaluation.

We mentioned two reasons to use NR metrics: First, these metrics would enable

us to directly use test data without reference, and thus real camera data could be

used for denoising evaluation. However, as the correlation to human perception is

much higher using FR metrics, we conclude that future denoising tests should be

based on test sets including reference data. The second reason was that parameter

tuning could be done automatically using a NR metric. Our test results indicate that

BIQI could be a possible candidate for a parameter tuning metric. However, we need

to verify this in future tests including more di®erent sequences and di®erent

denoising results obtained by varying parameters.

6. Conclusion

In this paper we proposed a realistic camera noise model and showed how to inte-

grate the complete camera processing chain into the test setup to evaluate denoising

approaches. We not only showed that the noise characteristic of the typically applied

AWGN is fundamentally di®erent from our realistic noise model, but also identi¯ed

that the signal-dependent noise as well as its spatial correlation has a signi¯cant

impact on the perceived visual quality of noisy and denoised images. In our sub-

jective test, we found that the spatially correlated noise, introduced in the demo-

saicking step, is perceived as more disturbing.
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negative correlation, which is probably due to the low quality rating for the denoised sequences.
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Denoising test images degraded by signal-dependent noise leads to results with a

lower visual quality than for AWGN. Further, the performance of state-of-the-art

denoising algorithms is considerably impaired by spatially correlated noise. Using

realistic camera noise, denoising can even reduce the perceived visual quality.

To estimate the visual quality of denoising results without costly subjective tests,

reliable quality metrics are required. In this paper, several state-of-the-art quality

metrics are evaluated. No-reference metrics as well as full-reference metrics have been

tested, however, none of the tested metrics fully re°ects the perceived visual quality.

While the widely used full-reference metrics PSNR and SSIM show a low correlation

with the subjective test results, the highest correlation is obtained using the metrics

PSNR-HVS, IFC, VIF and PSNR-HMA. All the tested no-reference metrics show a

very low correlation to the test results.

With the signi¯cant impact of the chosen noise characteristic on the visual quality

of noisy images and of denoising results, we conclude that a realistic noise model

should be used in future research. For realistic denoising evaluation, a new extensive

test set based on realistic noise, as well as new quality metrics that better re°ect the

visual quality of camera data, would be required.
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